eq2(0, 0) -> true
eq2(0, s1(Y)) -> false
eq2(s1(X), 0) -> false
eq2(s1(X), s1(Y)) -> eq2(X, Y)
le2(0, Y) -> true
le2(s1(X), 0) -> false
le2(s1(X), s1(Y)) -> le2(X, Y)
min1(cons2(0, nil)) -> 0
min1(cons2(s1(N), nil)) -> s1(N)
min1(cons2(N, cons2(M, L))) -> ifmin2(le2(N, M), cons2(N, cons2(M, L)))
ifmin2(true, cons2(N, cons2(M, L))) -> min1(cons2(N, L))
ifmin2(false, cons2(N, cons2(M, L))) -> min1(cons2(M, L))
replace3(N, M, nil) -> nil
replace3(N, M, cons2(K, L)) -> ifrepl4(eq2(N, K), N, M, cons2(K, L))
ifrepl4(true, N, M, cons2(K, L)) -> cons2(M, L)
ifrepl4(false, N, M, cons2(K, L)) -> cons2(K, replace3(N, M, L))
selsort1(nil) -> nil
selsort1(cons2(N, L)) -> ifselsort2(eq2(N, min1(cons2(N, L))), cons2(N, L))
ifselsort2(true, cons2(N, L)) -> cons2(N, selsort1(L))
ifselsort2(false, cons2(N, L)) -> cons2(min1(cons2(N, L)), selsort1(replace3(min1(cons2(N, L)), N, L)))
↳ QTRS
↳ DependencyPairsProof
eq2(0, 0) -> true
eq2(0, s1(Y)) -> false
eq2(s1(X), 0) -> false
eq2(s1(X), s1(Y)) -> eq2(X, Y)
le2(0, Y) -> true
le2(s1(X), 0) -> false
le2(s1(X), s1(Y)) -> le2(X, Y)
min1(cons2(0, nil)) -> 0
min1(cons2(s1(N), nil)) -> s1(N)
min1(cons2(N, cons2(M, L))) -> ifmin2(le2(N, M), cons2(N, cons2(M, L)))
ifmin2(true, cons2(N, cons2(M, L))) -> min1(cons2(N, L))
ifmin2(false, cons2(N, cons2(M, L))) -> min1(cons2(M, L))
replace3(N, M, nil) -> nil
replace3(N, M, cons2(K, L)) -> ifrepl4(eq2(N, K), N, M, cons2(K, L))
ifrepl4(true, N, M, cons2(K, L)) -> cons2(M, L)
ifrepl4(false, N, M, cons2(K, L)) -> cons2(K, replace3(N, M, L))
selsort1(nil) -> nil
selsort1(cons2(N, L)) -> ifselsort2(eq2(N, min1(cons2(N, L))), cons2(N, L))
ifselsort2(true, cons2(N, L)) -> cons2(N, selsort1(L))
ifselsort2(false, cons2(N, L)) -> cons2(min1(cons2(N, L)), selsort1(replace3(min1(cons2(N, L)), N, L)))
MIN1(cons2(N, cons2(M, L))) -> LE2(N, M)
IFMIN2(true, cons2(N, cons2(M, L))) -> MIN1(cons2(N, L))
IFREPL4(false, N, M, cons2(K, L)) -> REPLACE3(N, M, L)
REPLACE3(N, M, cons2(K, L)) -> EQ2(N, K)
REPLACE3(N, M, cons2(K, L)) -> IFREPL4(eq2(N, K), N, M, cons2(K, L))
IFSELSORT2(false, cons2(N, L)) -> SELSORT1(replace3(min1(cons2(N, L)), N, L))
IFMIN2(false, cons2(N, cons2(M, L))) -> MIN1(cons2(M, L))
SELSORT1(cons2(N, L)) -> EQ2(N, min1(cons2(N, L)))
EQ2(s1(X), s1(Y)) -> EQ2(X, Y)
SELSORT1(cons2(N, L)) -> MIN1(cons2(N, L))
IFSELSORT2(false, cons2(N, L)) -> REPLACE3(min1(cons2(N, L)), N, L)
LE2(s1(X), s1(Y)) -> LE2(X, Y)
IFSELSORT2(true, cons2(N, L)) -> SELSORT1(L)
MIN1(cons2(N, cons2(M, L))) -> IFMIN2(le2(N, M), cons2(N, cons2(M, L)))
IFSELSORT2(false, cons2(N, L)) -> MIN1(cons2(N, L))
SELSORT1(cons2(N, L)) -> IFSELSORT2(eq2(N, min1(cons2(N, L))), cons2(N, L))
eq2(0, 0) -> true
eq2(0, s1(Y)) -> false
eq2(s1(X), 0) -> false
eq2(s1(X), s1(Y)) -> eq2(X, Y)
le2(0, Y) -> true
le2(s1(X), 0) -> false
le2(s1(X), s1(Y)) -> le2(X, Y)
min1(cons2(0, nil)) -> 0
min1(cons2(s1(N), nil)) -> s1(N)
min1(cons2(N, cons2(M, L))) -> ifmin2(le2(N, M), cons2(N, cons2(M, L)))
ifmin2(true, cons2(N, cons2(M, L))) -> min1(cons2(N, L))
ifmin2(false, cons2(N, cons2(M, L))) -> min1(cons2(M, L))
replace3(N, M, nil) -> nil
replace3(N, M, cons2(K, L)) -> ifrepl4(eq2(N, K), N, M, cons2(K, L))
ifrepl4(true, N, M, cons2(K, L)) -> cons2(M, L)
ifrepl4(false, N, M, cons2(K, L)) -> cons2(K, replace3(N, M, L))
selsort1(nil) -> nil
selsort1(cons2(N, L)) -> ifselsort2(eq2(N, min1(cons2(N, L))), cons2(N, L))
ifselsort2(true, cons2(N, L)) -> cons2(N, selsort1(L))
ifselsort2(false, cons2(N, L)) -> cons2(min1(cons2(N, L)), selsort1(replace3(min1(cons2(N, L)), N, L)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
MIN1(cons2(N, cons2(M, L))) -> LE2(N, M)
IFMIN2(true, cons2(N, cons2(M, L))) -> MIN1(cons2(N, L))
IFREPL4(false, N, M, cons2(K, L)) -> REPLACE3(N, M, L)
REPLACE3(N, M, cons2(K, L)) -> EQ2(N, K)
REPLACE3(N, M, cons2(K, L)) -> IFREPL4(eq2(N, K), N, M, cons2(K, L))
IFSELSORT2(false, cons2(N, L)) -> SELSORT1(replace3(min1(cons2(N, L)), N, L))
IFMIN2(false, cons2(N, cons2(M, L))) -> MIN1(cons2(M, L))
SELSORT1(cons2(N, L)) -> EQ2(N, min1(cons2(N, L)))
EQ2(s1(X), s1(Y)) -> EQ2(X, Y)
SELSORT1(cons2(N, L)) -> MIN1(cons2(N, L))
IFSELSORT2(false, cons2(N, L)) -> REPLACE3(min1(cons2(N, L)), N, L)
LE2(s1(X), s1(Y)) -> LE2(X, Y)
IFSELSORT2(true, cons2(N, L)) -> SELSORT1(L)
MIN1(cons2(N, cons2(M, L))) -> IFMIN2(le2(N, M), cons2(N, cons2(M, L)))
IFSELSORT2(false, cons2(N, L)) -> MIN1(cons2(N, L))
SELSORT1(cons2(N, L)) -> IFSELSORT2(eq2(N, min1(cons2(N, L))), cons2(N, L))
eq2(0, 0) -> true
eq2(0, s1(Y)) -> false
eq2(s1(X), 0) -> false
eq2(s1(X), s1(Y)) -> eq2(X, Y)
le2(0, Y) -> true
le2(s1(X), 0) -> false
le2(s1(X), s1(Y)) -> le2(X, Y)
min1(cons2(0, nil)) -> 0
min1(cons2(s1(N), nil)) -> s1(N)
min1(cons2(N, cons2(M, L))) -> ifmin2(le2(N, M), cons2(N, cons2(M, L)))
ifmin2(true, cons2(N, cons2(M, L))) -> min1(cons2(N, L))
ifmin2(false, cons2(N, cons2(M, L))) -> min1(cons2(M, L))
replace3(N, M, nil) -> nil
replace3(N, M, cons2(K, L)) -> ifrepl4(eq2(N, K), N, M, cons2(K, L))
ifrepl4(true, N, M, cons2(K, L)) -> cons2(M, L)
ifrepl4(false, N, M, cons2(K, L)) -> cons2(K, replace3(N, M, L))
selsort1(nil) -> nil
selsort1(cons2(N, L)) -> ifselsort2(eq2(N, min1(cons2(N, L))), cons2(N, L))
ifselsort2(true, cons2(N, L)) -> cons2(N, selsort1(L))
ifselsort2(false, cons2(N, L)) -> cons2(min1(cons2(N, L)), selsort1(replace3(min1(cons2(N, L)), N, L)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
LE2(s1(X), s1(Y)) -> LE2(X, Y)
eq2(0, 0) -> true
eq2(0, s1(Y)) -> false
eq2(s1(X), 0) -> false
eq2(s1(X), s1(Y)) -> eq2(X, Y)
le2(0, Y) -> true
le2(s1(X), 0) -> false
le2(s1(X), s1(Y)) -> le2(X, Y)
min1(cons2(0, nil)) -> 0
min1(cons2(s1(N), nil)) -> s1(N)
min1(cons2(N, cons2(M, L))) -> ifmin2(le2(N, M), cons2(N, cons2(M, L)))
ifmin2(true, cons2(N, cons2(M, L))) -> min1(cons2(N, L))
ifmin2(false, cons2(N, cons2(M, L))) -> min1(cons2(M, L))
replace3(N, M, nil) -> nil
replace3(N, M, cons2(K, L)) -> ifrepl4(eq2(N, K), N, M, cons2(K, L))
ifrepl4(true, N, M, cons2(K, L)) -> cons2(M, L)
ifrepl4(false, N, M, cons2(K, L)) -> cons2(K, replace3(N, M, L))
selsort1(nil) -> nil
selsort1(cons2(N, L)) -> ifselsort2(eq2(N, min1(cons2(N, L))), cons2(N, L))
ifselsort2(true, cons2(N, L)) -> cons2(N, selsort1(L))
ifselsort2(false, cons2(N, L)) -> cons2(min1(cons2(N, L)), selsort1(replace3(min1(cons2(N, L)), N, L)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
LE2(s1(X), s1(Y)) -> LE2(X, Y)
POL(LE2(x1, x2)) = x2
POL(s1(x1)) = 1 + x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
eq2(0, 0) -> true
eq2(0, s1(Y)) -> false
eq2(s1(X), 0) -> false
eq2(s1(X), s1(Y)) -> eq2(X, Y)
le2(0, Y) -> true
le2(s1(X), 0) -> false
le2(s1(X), s1(Y)) -> le2(X, Y)
min1(cons2(0, nil)) -> 0
min1(cons2(s1(N), nil)) -> s1(N)
min1(cons2(N, cons2(M, L))) -> ifmin2(le2(N, M), cons2(N, cons2(M, L)))
ifmin2(true, cons2(N, cons2(M, L))) -> min1(cons2(N, L))
ifmin2(false, cons2(N, cons2(M, L))) -> min1(cons2(M, L))
replace3(N, M, nil) -> nil
replace3(N, M, cons2(K, L)) -> ifrepl4(eq2(N, K), N, M, cons2(K, L))
ifrepl4(true, N, M, cons2(K, L)) -> cons2(M, L)
ifrepl4(false, N, M, cons2(K, L)) -> cons2(K, replace3(N, M, L))
selsort1(nil) -> nil
selsort1(cons2(N, L)) -> ifselsort2(eq2(N, min1(cons2(N, L))), cons2(N, L))
ifselsort2(true, cons2(N, L)) -> cons2(N, selsort1(L))
ifselsort2(false, cons2(N, L)) -> cons2(min1(cons2(N, L)), selsort1(replace3(min1(cons2(N, L)), N, L)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
IFMIN2(false, cons2(N, cons2(M, L))) -> MIN1(cons2(M, L))
IFMIN2(true, cons2(N, cons2(M, L))) -> MIN1(cons2(N, L))
MIN1(cons2(N, cons2(M, L))) -> IFMIN2(le2(N, M), cons2(N, cons2(M, L)))
eq2(0, 0) -> true
eq2(0, s1(Y)) -> false
eq2(s1(X), 0) -> false
eq2(s1(X), s1(Y)) -> eq2(X, Y)
le2(0, Y) -> true
le2(s1(X), 0) -> false
le2(s1(X), s1(Y)) -> le2(X, Y)
min1(cons2(0, nil)) -> 0
min1(cons2(s1(N), nil)) -> s1(N)
min1(cons2(N, cons2(M, L))) -> ifmin2(le2(N, M), cons2(N, cons2(M, L)))
ifmin2(true, cons2(N, cons2(M, L))) -> min1(cons2(N, L))
ifmin2(false, cons2(N, cons2(M, L))) -> min1(cons2(M, L))
replace3(N, M, nil) -> nil
replace3(N, M, cons2(K, L)) -> ifrepl4(eq2(N, K), N, M, cons2(K, L))
ifrepl4(true, N, M, cons2(K, L)) -> cons2(M, L)
ifrepl4(false, N, M, cons2(K, L)) -> cons2(K, replace3(N, M, L))
selsort1(nil) -> nil
selsort1(cons2(N, L)) -> ifselsort2(eq2(N, min1(cons2(N, L))), cons2(N, L))
ifselsort2(true, cons2(N, L)) -> cons2(N, selsort1(L))
ifselsort2(false, cons2(N, L)) -> cons2(min1(cons2(N, L)), selsort1(replace3(min1(cons2(N, L)), N, L)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
IFMIN2(false, cons2(N, cons2(M, L))) -> MIN1(cons2(M, L))
IFMIN2(true, cons2(N, cons2(M, L))) -> MIN1(cons2(N, L))
Used ordering: Polynomial interpretation [21]:
MIN1(cons2(N, cons2(M, L))) -> IFMIN2(le2(N, M), cons2(N, cons2(M, L)))
POL(0) = 0
POL(IFMIN2(x1, x2)) = x2
POL(MIN1(x1)) = x1
POL(cons2(x1, x2)) = 1 + x2
POL(false) = 0
POL(le2(x1, x2)) = 0
POL(s1(x1)) = 0
POL(true) = 0
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDP
↳ QDP
MIN1(cons2(N, cons2(M, L))) -> IFMIN2(le2(N, M), cons2(N, cons2(M, L)))
eq2(0, 0) -> true
eq2(0, s1(Y)) -> false
eq2(s1(X), 0) -> false
eq2(s1(X), s1(Y)) -> eq2(X, Y)
le2(0, Y) -> true
le2(s1(X), 0) -> false
le2(s1(X), s1(Y)) -> le2(X, Y)
min1(cons2(0, nil)) -> 0
min1(cons2(s1(N), nil)) -> s1(N)
min1(cons2(N, cons2(M, L))) -> ifmin2(le2(N, M), cons2(N, cons2(M, L)))
ifmin2(true, cons2(N, cons2(M, L))) -> min1(cons2(N, L))
ifmin2(false, cons2(N, cons2(M, L))) -> min1(cons2(M, L))
replace3(N, M, nil) -> nil
replace3(N, M, cons2(K, L)) -> ifrepl4(eq2(N, K), N, M, cons2(K, L))
ifrepl4(true, N, M, cons2(K, L)) -> cons2(M, L)
ifrepl4(false, N, M, cons2(K, L)) -> cons2(K, replace3(N, M, L))
selsort1(nil) -> nil
selsort1(cons2(N, L)) -> ifselsort2(eq2(N, min1(cons2(N, L))), cons2(N, L))
ifselsort2(true, cons2(N, L)) -> cons2(N, selsort1(L))
ifselsort2(false, cons2(N, L)) -> cons2(min1(cons2(N, L)), selsort1(replace3(min1(cons2(N, L)), N, L)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
EQ2(s1(X), s1(Y)) -> EQ2(X, Y)
eq2(0, 0) -> true
eq2(0, s1(Y)) -> false
eq2(s1(X), 0) -> false
eq2(s1(X), s1(Y)) -> eq2(X, Y)
le2(0, Y) -> true
le2(s1(X), 0) -> false
le2(s1(X), s1(Y)) -> le2(X, Y)
min1(cons2(0, nil)) -> 0
min1(cons2(s1(N), nil)) -> s1(N)
min1(cons2(N, cons2(M, L))) -> ifmin2(le2(N, M), cons2(N, cons2(M, L)))
ifmin2(true, cons2(N, cons2(M, L))) -> min1(cons2(N, L))
ifmin2(false, cons2(N, cons2(M, L))) -> min1(cons2(M, L))
replace3(N, M, nil) -> nil
replace3(N, M, cons2(K, L)) -> ifrepl4(eq2(N, K), N, M, cons2(K, L))
ifrepl4(true, N, M, cons2(K, L)) -> cons2(M, L)
ifrepl4(false, N, M, cons2(K, L)) -> cons2(K, replace3(N, M, L))
selsort1(nil) -> nil
selsort1(cons2(N, L)) -> ifselsort2(eq2(N, min1(cons2(N, L))), cons2(N, L))
ifselsort2(true, cons2(N, L)) -> cons2(N, selsort1(L))
ifselsort2(false, cons2(N, L)) -> cons2(min1(cons2(N, L)), selsort1(replace3(min1(cons2(N, L)), N, L)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
EQ2(s1(X), s1(Y)) -> EQ2(X, Y)
POL(EQ2(x1, x2)) = x2
POL(s1(x1)) = 1 + x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
eq2(0, 0) -> true
eq2(0, s1(Y)) -> false
eq2(s1(X), 0) -> false
eq2(s1(X), s1(Y)) -> eq2(X, Y)
le2(0, Y) -> true
le2(s1(X), 0) -> false
le2(s1(X), s1(Y)) -> le2(X, Y)
min1(cons2(0, nil)) -> 0
min1(cons2(s1(N), nil)) -> s1(N)
min1(cons2(N, cons2(M, L))) -> ifmin2(le2(N, M), cons2(N, cons2(M, L)))
ifmin2(true, cons2(N, cons2(M, L))) -> min1(cons2(N, L))
ifmin2(false, cons2(N, cons2(M, L))) -> min1(cons2(M, L))
replace3(N, M, nil) -> nil
replace3(N, M, cons2(K, L)) -> ifrepl4(eq2(N, K), N, M, cons2(K, L))
ifrepl4(true, N, M, cons2(K, L)) -> cons2(M, L)
ifrepl4(false, N, M, cons2(K, L)) -> cons2(K, replace3(N, M, L))
selsort1(nil) -> nil
selsort1(cons2(N, L)) -> ifselsort2(eq2(N, min1(cons2(N, L))), cons2(N, L))
ifselsort2(true, cons2(N, L)) -> cons2(N, selsort1(L))
ifselsort2(false, cons2(N, L)) -> cons2(min1(cons2(N, L)), selsort1(replace3(min1(cons2(N, L)), N, L)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
IFREPL4(false, N, M, cons2(K, L)) -> REPLACE3(N, M, L)
REPLACE3(N, M, cons2(K, L)) -> IFREPL4(eq2(N, K), N, M, cons2(K, L))
eq2(0, 0) -> true
eq2(0, s1(Y)) -> false
eq2(s1(X), 0) -> false
eq2(s1(X), s1(Y)) -> eq2(X, Y)
le2(0, Y) -> true
le2(s1(X), 0) -> false
le2(s1(X), s1(Y)) -> le2(X, Y)
min1(cons2(0, nil)) -> 0
min1(cons2(s1(N), nil)) -> s1(N)
min1(cons2(N, cons2(M, L))) -> ifmin2(le2(N, M), cons2(N, cons2(M, L)))
ifmin2(true, cons2(N, cons2(M, L))) -> min1(cons2(N, L))
ifmin2(false, cons2(N, cons2(M, L))) -> min1(cons2(M, L))
replace3(N, M, nil) -> nil
replace3(N, M, cons2(K, L)) -> ifrepl4(eq2(N, K), N, M, cons2(K, L))
ifrepl4(true, N, M, cons2(K, L)) -> cons2(M, L)
ifrepl4(false, N, M, cons2(K, L)) -> cons2(K, replace3(N, M, L))
selsort1(nil) -> nil
selsort1(cons2(N, L)) -> ifselsort2(eq2(N, min1(cons2(N, L))), cons2(N, L))
ifselsort2(true, cons2(N, L)) -> cons2(N, selsort1(L))
ifselsort2(false, cons2(N, L)) -> cons2(min1(cons2(N, L)), selsort1(replace3(min1(cons2(N, L)), N, L)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
IFREPL4(false, N, M, cons2(K, L)) -> REPLACE3(N, M, L)
Used ordering: Polynomial interpretation [21]:
REPLACE3(N, M, cons2(K, L)) -> IFREPL4(eq2(N, K), N, M, cons2(K, L))
POL(0) = 0
POL(IFREPL4(x1, x2, x3, x4)) = x4
POL(REPLACE3(x1, x2, x3)) = x3
POL(cons2(x1, x2)) = 1 + x2
POL(eq2(x1, x2)) = 0
POL(false) = 0
POL(s1(x1)) = 0
POL(true) = 0
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
REPLACE3(N, M, cons2(K, L)) -> IFREPL4(eq2(N, K), N, M, cons2(K, L))
eq2(0, 0) -> true
eq2(0, s1(Y)) -> false
eq2(s1(X), 0) -> false
eq2(s1(X), s1(Y)) -> eq2(X, Y)
le2(0, Y) -> true
le2(s1(X), 0) -> false
le2(s1(X), s1(Y)) -> le2(X, Y)
min1(cons2(0, nil)) -> 0
min1(cons2(s1(N), nil)) -> s1(N)
min1(cons2(N, cons2(M, L))) -> ifmin2(le2(N, M), cons2(N, cons2(M, L)))
ifmin2(true, cons2(N, cons2(M, L))) -> min1(cons2(N, L))
ifmin2(false, cons2(N, cons2(M, L))) -> min1(cons2(M, L))
replace3(N, M, nil) -> nil
replace3(N, M, cons2(K, L)) -> ifrepl4(eq2(N, K), N, M, cons2(K, L))
ifrepl4(true, N, M, cons2(K, L)) -> cons2(M, L)
ifrepl4(false, N, M, cons2(K, L)) -> cons2(K, replace3(N, M, L))
selsort1(nil) -> nil
selsort1(cons2(N, L)) -> ifselsort2(eq2(N, min1(cons2(N, L))), cons2(N, L))
ifselsort2(true, cons2(N, L)) -> cons2(N, selsort1(L))
ifselsort2(false, cons2(N, L)) -> cons2(min1(cons2(N, L)), selsort1(replace3(min1(cons2(N, L)), N, L)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
IFSELSORT2(true, cons2(N, L)) -> SELSORT1(L)
IFSELSORT2(false, cons2(N, L)) -> SELSORT1(replace3(min1(cons2(N, L)), N, L))
SELSORT1(cons2(N, L)) -> IFSELSORT2(eq2(N, min1(cons2(N, L))), cons2(N, L))
eq2(0, 0) -> true
eq2(0, s1(Y)) -> false
eq2(s1(X), 0) -> false
eq2(s1(X), s1(Y)) -> eq2(X, Y)
le2(0, Y) -> true
le2(s1(X), 0) -> false
le2(s1(X), s1(Y)) -> le2(X, Y)
min1(cons2(0, nil)) -> 0
min1(cons2(s1(N), nil)) -> s1(N)
min1(cons2(N, cons2(M, L))) -> ifmin2(le2(N, M), cons2(N, cons2(M, L)))
ifmin2(true, cons2(N, cons2(M, L))) -> min1(cons2(N, L))
ifmin2(false, cons2(N, cons2(M, L))) -> min1(cons2(M, L))
replace3(N, M, nil) -> nil
replace3(N, M, cons2(K, L)) -> ifrepl4(eq2(N, K), N, M, cons2(K, L))
ifrepl4(true, N, M, cons2(K, L)) -> cons2(M, L)
ifrepl4(false, N, M, cons2(K, L)) -> cons2(K, replace3(N, M, L))
selsort1(nil) -> nil
selsort1(cons2(N, L)) -> ifselsort2(eq2(N, min1(cons2(N, L))), cons2(N, L))
ifselsort2(true, cons2(N, L)) -> cons2(N, selsort1(L))
ifselsort2(false, cons2(N, L)) -> cons2(min1(cons2(N, L)), selsort1(replace3(min1(cons2(N, L)), N, L)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
IFSELSORT2(true, cons2(N, L)) -> SELSORT1(L)
IFSELSORT2(false, cons2(N, L)) -> SELSORT1(replace3(min1(cons2(N, L)), N, L))
Used ordering: Polynomial interpretation [21]:
SELSORT1(cons2(N, L)) -> IFSELSORT2(eq2(N, min1(cons2(N, L))), cons2(N, L))
POL(0) = 0
POL(IFSELSORT2(x1, x2)) = x2
POL(SELSORT1(x1)) = x1
POL(cons2(x1, x2)) = 1 + x2
POL(eq2(x1, x2)) = 0
POL(false) = 0
POL(ifmin2(x1, x2)) = 0
POL(ifrepl4(x1, x2, x3, x4)) = x4
POL(le2(x1, x2)) = 0
POL(min1(x1)) = 0
POL(nil) = 0
POL(replace3(x1, x2, x3)) = x3
POL(s1(x1)) = 0
POL(true) = 0
ifrepl4(false, N, M, cons2(K, L)) -> cons2(K, replace3(N, M, L))
ifrepl4(true, N, M, cons2(K, L)) -> cons2(M, L)
replace3(N, M, cons2(K, L)) -> ifrepl4(eq2(N, K), N, M, cons2(K, L))
replace3(N, M, nil) -> nil
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
SELSORT1(cons2(N, L)) -> IFSELSORT2(eq2(N, min1(cons2(N, L))), cons2(N, L))
eq2(0, 0) -> true
eq2(0, s1(Y)) -> false
eq2(s1(X), 0) -> false
eq2(s1(X), s1(Y)) -> eq2(X, Y)
le2(0, Y) -> true
le2(s1(X), 0) -> false
le2(s1(X), s1(Y)) -> le2(X, Y)
min1(cons2(0, nil)) -> 0
min1(cons2(s1(N), nil)) -> s1(N)
min1(cons2(N, cons2(M, L))) -> ifmin2(le2(N, M), cons2(N, cons2(M, L)))
ifmin2(true, cons2(N, cons2(M, L))) -> min1(cons2(N, L))
ifmin2(false, cons2(N, cons2(M, L))) -> min1(cons2(M, L))
replace3(N, M, nil) -> nil
replace3(N, M, cons2(K, L)) -> ifrepl4(eq2(N, K), N, M, cons2(K, L))
ifrepl4(true, N, M, cons2(K, L)) -> cons2(M, L)
ifrepl4(false, N, M, cons2(K, L)) -> cons2(K, replace3(N, M, L))
selsort1(nil) -> nil
selsort1(cons2(N, L)) -> ifselsort2(eq2(N, min1(cons2(N, L))), cons2(N, L))
ifselsort2(true, cons2(N, L)) -> cons2(N, selsort1(L))
ifselsort2(false, cons2(N, L)) -> cons2(min1(cons2(N, L)), selsort1(replace3(min1(cons2(N, L)), N, L)))